periodicity morphism - определение. Что такое periodicity morphism
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое periodicity morphism - определение

THEOREM ON HOMOTOPY GROUPS
Bott periodicity; Bott element; Bott's periodicity theorem
Найдено результатов: 98
Morphism of schemes         
RINGED SPACE MORPHISM BETWEEN SCHEMES; LOCALLY A COMMUTATIVE RING HOMOMORPHISM BETWEEN COORDINATE RINGS
Scheme morphism; Graph morphism (algebraic geometry)
In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes.
Periodicity         
WIKIMEDIA DISAMBIGUATION PAGE
Periodic; Periodicity (disambiguation); Periodic (disambiguation); Periodicities
·noun The quality or state of being periodical, or regularly recurrent; as, the periodicity in the vital phenomena of plants.
periodic         
WIKIMEDIA DISAMBIGUATION PAGE
Periodic; Periodicity (disambiguation); Periodic (disambiguation); Periodicities
Periodic events or situations happen occasionally, at fairly regular intervals.
...periodic bouts of illness.
= periodical
ADJ: usu ADJ n
Morphism         
MAP (ARROW) BETWEEN TWO OBJECTS OF A CATEGORY
MorphisM; Hom-set; Identity morphism; Bimorphism; Morphisms; -morphism; Structure preserving mappings; Structure preserving mapping; Morphism (category theory); Balanced Category; Balanced category; Arrow (category theory); Hom set; Hom space
In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics.
Étale morphism         
SMOOTH SCHEME MORPHISM OF RELATIVE DIMENSION 0
Etale morphism; Étale map; Étale covering; Etale morphisms; Etale covering; Etale map
In algebraic geometry, an étale morphism () is a morphism of schemes that is formally étale and locally of finite presentation. This is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology.
Periodicity         
WIKIMEDIA DISAMBIGUATION PAGE
Periodic; Periodicity (disambiguation); Periodic (disambiguation); Periodicities
The rate of succession of alternations or of other fixed phases; the rate of recurrence of phenomena.
periodic         
WIKIMEDIA DISAMBIGUATION PAGE
Periodic; Periodicity (disambiguation); Periodic (disambiguation); Periodicities
[?p??r?'?d?k]
¦ adjective
1. appearing or occurring at intervals.
2. Chemistry relating to the periodic table of the elements or the pattern of chemical properties which underlies it.
3. relating to a rhetorical period.
Derivatives
periodicity noun
Contraction morphism         
Draft:Contraction morphism; Algebraic fiber space; Contracting morphism
In algebraic geometry, a contraction morphism is a surjective projective morphism f: X \to Y between normal projective varieties (or projective schemes) such that f_* \mathcal{O}_X = \mathcal{O}_Y or, equivalently, the geometric fibers are all connected (Zariski's connectedness theorem). It is also commonly called an algebraic fiber space, as it is an analog of a fiber space in algebraic topology.
Periodic         
WIKIMEDIA DISAMBIGUATION PAGE
Periodic; Periodicity (disambiguation); Periodic (disambiguation); Periodicities
·adj ·Alt. of Periodical.
II. Periodic ·adj Pertaining to, derived from, or designating, the highest oxygen acid (HIO/) of iodine.
Periodicities         
WIKIMEDIA DISAMBIGUATION PAGE
Periodic; Periodicity (disambiguation); Periodic (disambiguation); Periodicities
·pl of Periodicity.

Википедия

Bott periodicity theorem

In mathematics, the Bott periodicity theorem describes a periodicity in the homotopy groups of classical groups, discovered by Raoul Bott (1957, 1959), which proved to be of foundational significance for much further research, in particular in K-theory of stable complex vector bundles, as well as the stable homotopy groups of spheres. Bott periodicity can be formulated in numerous ways, with the periodicity in question always appearing as a period-2 phenomenon, with respect to dimension, for the theory associated to the unitary group. See for example topological K-theory.

There are corresponding period-8 phenomena for the matching theories, (real) KO-theory and (quaternionic) KSp-theory, associated to the real orthogonal group and the quaternionic symplectic group, respectively. The J-homomorphism is a homomorphism from the homotopy groups of orthogonal groups to stable homotopy groups of spheres, which causes the period 8 Bott periodicity to be visible in the stable homotopy groups of spheres.